Как расшифровывается атф в биологии

Строение и функции АТФ. урок. Биология 10 Класс

Как расшифровывается атф в биологии

Тема: Основы цитологии

Урок: Строение и функции АТФ

Как вы помните, нуклеиновые кислотысостоят из нуклеотидов. Оказалось, что в клетке нуклеотиды могут находиться в связанном состоянии или в свободном состоянии. В свободном состоянии они выполняют ряд важных для жизнедеятельности организма функций.

К таким свободным нуклеотидам относится молекула АТФ или аденозинтрифосфорная кислота (аденозинтрифосфат). Как и все нуклеотиды, АТФ состоит из пятиуглеродного сахара – рибозы, азотистого основания – аденина, и, в отличие от нуклеотидов ДНК и РНК, трех остатков фосфорной кислоты (рис. 1).

Рис. 1. Три схематических изображения АТФ

Важнейшая функция АТФ состоит в том, что она является универсальным хранителем и переносчиком энергии в клетке.

Все биохимические реакции в клетке, которые требуют затрат энергии, в качестве ее источника используют АТФ.

При отделении одного остатка фосфорной кислоты, АТФ переходит в АДФ (аденозиндифосфат). Если отделяется ещё один остаток фосфорной кислоты (что случается в особых случаях), АДФ переходит в АМФ (аденозинмонофосфат) (рис. 2).

Рис. 2. Гидролиза АТФ и превращение её в АДФ

При отделении второго и третьего остатков фосфорной кислоты освобождается большое количество энергии, до 40 кДж. Именно поэтому связь между этими остатками фосфорной кислоты называют макроэргической и обозначают соответственным символом.

При гидролизе обычной связи выделяется (или поглощается) небольшое количество энергии, а при гидролизе макроэргической связи выделяется намного больше энергии (40 кДж). Связь между рибозой и первым остатком фосфорной кислоты не является макроэргической, при её гидролизе выделяется всего 14 кДж энергии.

Макроэргические соединения могут образовываться и на основе других нуклеотидов, например ГТФ (гуанозинтрифосфат) используется как источник энергии в биосинтезе белка, принимает участие в реакциях передачи сигнала, является субстратом для синтеза РНК в процессе транскрипции, но именно АТФ является наиболее распространенным и универсальным источником энергии в клетке.

АТФ содержится как в цитоплазме, так и в ядре, митохондриях и хлоропластах.

Таким образом, мы вспомнили, что такое АТФ, каковы её функции, и что такое макроэргическая связь.

Витамины – биологически активные органические соединения, которые в малых количествах необходимы для подержания процессов жизнедеятельности в клетке.

Они не являются структурными компонентами живой материи, и не используются в качестве источника энергии.

Большинство витаминов не синтезируются в организме человека и животных, а поступают в него с пищей, некоторые синтезируются в небольших количествах микрофлорой кишечника и тканями (витамин D синтезируется кожей).

Потребность человека и животных в витаминах не одинакова и зависит от таких факторов как пол, возраст, физиологическое состояние и условия среды обитания. Некоторые витамины нужны не всем животным.

Например, аскорбиновая кислота, или витамин С, необходим человеку и другим приматам. Вместе с тем, он синтезируется в организме рептилий (моряки брали в плавания черепах, для борьбы с цингой – авитаминозом витамина С).

Витамины были открыты в конце XIX века благодаря работам русских ученых Н. И. Лунина и В. Пашутина, которые показали, что для полноценного питания необходимо не только наличие белков, жиров и углеводов, но и ещё каких-то других, на тот момент неизвестных, веществ.

В 1912 году польский ученый К. Функ (Рис. 3), изучая компоненты шелухи риса, предохраняющей от болезни Бери-Бери (авитаминоз витамина В), предположил, что в состав этих веществ обязательно должны входить аминные группировки. Именно он предложили назвать эти вещества витаминами, то есть аминами жизни.

В дальнейшем было установлено, что многие из этих веществ аминогрупп не содержат, но термин витамины хорошо прижился в языке науки и практики.

По мере открытия отдельных витаминов, их обозначали латинскими буквами и называли в зависимости от выполняемых функций. Например, витамин Е назвали токоферол (от др.-греч. τόκος – «деторождение», и φέρειν – «приносить»).

Рис. 3. Автор термина «витамин»

Сегодня витамины делят по их способности растворяться в воде или в жирах.

К водорастворимым витаминам относят витамины H, C, P, В.

К жирорастворимым витаминам относят A, D, E, K(можно запомнить, как слово: кеда).

Как уже было отмечено, потребность в витаминах зависит от возраста, пола, физиологического состояния организма и среды обитания. В молодом возрасте отмечена явная нужда в витаминах. Ослабленный организм тоже требует больших доз этих веществ. С возрастом способность усваивать витамины падает.

Потребность в витаминах также определяется способностью организма их утилизировать.

В 1912 году польский ученый Казимир Функ получил из шелухи риса частично очищенный витамин B1 – тиамин. Ещё 15 лет понадобилось для получения этого вещества в кристаллическом состоянии.

Кристаллический витамин B1 бесцветен, обладает горьковатым вкусом и хорошо растворим в воде. Тиамин найден как в растительных, так и микробных клетках. Особенно много его в зерновых культурах и дрожжах (рис. 4).

Рис. 4. Тиамин в виде таблеток и в продуктах питания

Термическая обработка пищевых продуктов и различные добавки разрушают тиамин. При авитаминозе наблюдаются патологии нервной, сердечно-сосудистой и пищеварительной систем. Авитаминоз приводит к нарушению водного обмена и функции кроветворения. Один из ярких примеров авитаминоза тиамина – это развитие болезни Бери-Бери (рис. 5).

Рис. 5. Человек, страдающий от авитаминоза тиамина – болезни бери-бери

Витамин В1 широко применяется в медицинской практике для лечения различных нервных заболеваний, сердечно-сосудистых расстройств.

В хлебопечении тиамин вместе с другим витаминами – рибофлавином и никотиновой кислотой используется для витаминизации хлебобулочных изделий.

В 1922 году Г. Эванс и А. Бишо открыли жирорастворимый витамин, названный ими токоферолом или витамином Е (дословно: «способствующий родам»).

Витамин Е в чистом виде – маслянистая жидкость. Он широко распространен в злаковых культурах, например в пшенице. Его много в растительных, животных жирах (рис. 6).

Рис. 6. Токоферол и продукты, которые его содержат

Много витамина E в моркови, в яйцах и молоке. Витамин E является антиоксидантом, то есть защищает клетки от патологического окисления, которое приводит их к старению и гибели. Он является «витамином молодости». Огромно значение витамина для половой системы, поэтому его часто называют витамином размножения.

Вследствие этого, дефицит витамина Е, в первую очередь, приводит к нарушению эмбриогенеза и работы репродуктивных органов.

Производство витамина Е основано на выделении его из зародышей пшеницы – методом спиртовой экстракции и отгонки растворителей при низких температурах.

В медицинской практике используют как природные, так и синтетические препараты – токоферолаацетат в растительном масле, заключенный в капсулу (знаменитый «рыбий жир»).

Препараты витамина Е используются как антиоксиданты при облучениях и других патологических состояниях, связанных с повышенным содержанием в организме ионизированных частиц и активных форм кислорода.

Кроме того, витамин Е назначают беременным женщинам, а также используют в комплексной терапии лечения бесплодия, при мышечной дистрофии и некоторых заболеваниях печени.

Витамин А (рис. 7) был открыт Н. Друммондом в 1916 году.

Этому открытию предшествовали наблюдения за наличием жирорастворимого фактора в пище, необходимого для полноценного развития сельскохозяйственных животных.

Витамин А недаром занимает первое место в витамином алфавите. Он участвует практически во всех процессах жизнедеятельности. Этот витамин необходим для восстановления и сохранения хорошего зрения.

Он также помогает вырабатывать иммунитет ко многим заболеваниям, в том числе и простудным.

Без витамина А невозможно здоровое состояние эпителия кожи. Если у вас «гусиная кожа», которая чаще всего появляется на локтях, бедрах, коленях, голенях, если появилась сухость кожи на руках или возникают другие подобные явления, это означает, что вам недостает витамина А.

Витамин А, как и витамин Е, необходим для нормального функционирования половых желез (гонад). При гиповитаминозе витамина А отмечено повреждение репродуктивной системы и органов дыхания.

Одним из специфических последствий недостатка витамина А является нарушение процесса зрения, в частности снижение способности глаз к темновой адаптации – куриная слепота.

Авитаминоз приводит к возникновению ксерофтальмии и разрушению роговицы. Последний процесс необратим, и характеризуется полной потерей зрения.

Гипервитаминоз приводит к воспалению глаз и нарушению волосяного покрова, потери аппетита и полному истощению организма.

Рис. 7. Витамин А и продукты, которые его содержат

Витамины группы А, в первую очередь, содержатся в продуктах животного происхождения: в печени, в рыбьем жире, в масле, в яйцах (рис. 8).

Рис. 8. витамина А в продуктах растительного и животного происхождения

В продуктах растительного происхождения содержатся каротиноиды, которые в организме человека под действием фермента каротиназы переходят в витамин А.

Таким образом, Вы познакомились сегодня со структурой и функциями АТФ, а также вспомнили о значении витаминов и выяснили, как некоторые из них участвуют в процессах жизнедеятельности.

При недостаточном поступлении витаминов в организм развивается первичный авитаминоз. Разные продукты содержат разное количество витаминов.

Например, морковь содержит много провитамина А (каротина), капуста содержит витамин С и т. д. Отсюда проистекает необходимость сбалансированной диеты, включающей в себя разнообразные продукты растительного и животного происхождения.

Авитаминоз при нормальных условиях питания встречается очень редко, гораздо чаще встречаются гиповитаминозы, которые связаны с недостаточным поступлением с пищей витаминов.

Гиповитаминоз может возникать не только в результате несбалансированного питания, но и как следствие различных патологий со стороны желудочно-кишечного тракта или печени, или в результате различных эндокринных или инфекционных заболеваний, которые приводят к нарушению всасывания витаминов в организме.

Некоторые витамины вырабатываются кишечной микрофлорой (микробиотой кишечника). Подавление биосинтетических процессов в результате действия антибиотиков может также привести к развитию гиповитаминоза, как следствия дисбактериоза.

Чрезмерное употребление пищевых витаминных добавок, а также лекарственных средств, содержащих витамины, приводит к возникновению патологического состояния – гипервитаминоза. Особенно это характерно для жирорастворимых витаминов, таких как A, D, E, K.

Домашнее задание

1. Какие вещества называют биологически активными?

2. Что такое АТФ? В чем особенность строения молекулы АТФ? Какие типы химической связи существуют в этой комплексной молекуле?

3. Каковы функции АТФ в клетках живых организмов?

4. Где происходит синтез АТФ? Где осуществляется гидролиз АТФ?

5. Что такое витамины? Каковы их функции в организме?

6. Чем витамины отличаются от гормонов?

7. Какие классификации витаминов вам известны?

8. Что такое авитаминоз, гиповитаминоз и гипервитаминоз? Приведите примеры этих явлений.

9. Какие заболевания могут быть следствием недостаточного или избыточного поступления витаминов в организм?

10. Обсудите с друзьями и родственниками свое меню, подсчитайте, пользуясь дополнительной информацией о содержании витаминов в разных продуктах питания, достаточно ли витаминов вы получаете.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Единая коллекция Цифровых Образовательных Ресурсов (Источник).

2. Единая коллекция Цифровых Образовательных Ресурсов (Источник).

3. Единая коллекция Цифровых Образовательных Ресурсов (Источник).

4. Вся биология (Источник).

5. Гугл (Источник).

6. Интернет-портал Ducksters (Источник).

Список литературы

1. Каменский А. А., Криксунов Е. А., Пасечник В. В. Общая биология 10-11 класс Дрофа, 2005.

2. Беляев Д. К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с. 

3. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.

Источник: https://interneturok.ru/lesson/biology/10-klass/bosnovy-citologii-b/stroenie-i-funktsii-atf?konspekt

Синтез АТФ – структура, функции и пути образования аденозинтрифосфорной кислоты

Как расшифровывается атф в биологии

Синтез АТФ – процесс, направленный на поддержание жизнедеятельности клетки, сопровождаемый образованием энергии. Образование АТФ происходит на внутренней мембране митохондрий, которые являются энергетическим аккумулятором клетки.

Расшифровка АТФ

Аденозинтрифосфорная кислота или АТФ – необходимое условие для существования 9 из 10 клеток с аэробным дыханием. Получение энергии происходит при фосфорилировании, присоединении остатка фосфорной кислоты. На одну молекулу АТФ приходится около 7,3 килокалории энергии.

Какие соединения входят в состав АТФ

Строение АТФ и биологическая роль тесно связаны. В состав АТФ входят аденозин, три остатка фосфорной кислоты. Связи, существующие между аминокислотой и фосфатом, подвергаются гидролизу в присутствии воды, в результате образуется АДФ (аденозиндифосфат), фосфорная кислота. Этот процесс происходит с высвобождением энергии.

Энергообразование происходит за счет разрыва макроэргических связей АТФ (обозначаемых в формуле знаком тильда). Сам аденозин состоит из аденина – пуринового нуклеотида и рибозы. Первая участвует в синтезе ДНК, вторая – составляющая структуры РНК.

Образование энергии

Макроэргическая связь заключена между общими электронами остатков фосфорной кислоты (что и удерживает их вместе). Кислород и фосфор образуют общую электронную пару – высокоэнергетическую. Поэтому при отщеплении снижается энергия электронов: отщепляется фосфат и выделяется ее избыточное количество.

Процесс переноса электронов осуществляется посредством дыхательной цепи. Основную роль здесь играет восстановленный НАДН (Никотинамидадениндинуклеотид). Данное вещество окисляется, отдавая водород. Также на дыхательной цепи синтезируется АТФ. Фосфорилирование происходит на внутренней стороне мембраны митохондрии при помощи АТФ-синтазы.

Последняя выступает переносчиком ионов водорода, что необходимо в связи с существованием градиента на внутренней и внешней мембранах. Перенос водорода через мембрану – хемиосмос, ведет к возникновению связи между АДФ и остатком фосфорной кислоты, иначе говоря, к окислительному фосфорилированию.

Пути синтеза АТФ и его роль

Образование АТФ возможно в ходе гликолиза, цикла трикарбоновых кислот или цикла Кребса. Такие процессы носят название субстратного фосфорилирования.

В ходе первого получают четыре молекулы АТФ, две молекулы пирувата или пировиноградной кислоты из глюкозы. Это бескислородное расщепление.

На обеспечение данного процесса затрачивается 2 АТФ, протекает он в цитоплазме или цитозоле. Цикл лимонной кислоты происходит на кристах (складки внутренней оболочки) митохондрий в ходе окисления пирувата.

При этом происходит отщепление одного атома углерода с образованием ацетилкоэнзима А и восстановление НАДН. 

Далее синтезируется лимонная кислота при участии щавелевоуксусной кислоты. Цитрат превращается в цис-аконитат, который переходит в изоцитрат. К последнему присоединяется окисленный НАДН, который восстанавливается.

Отщепление водорода приводит к синтезу кетоглутарата, с ним снова соединяется окисленный НАДН и ацетилкоэнзим А. На этой стадии синтезируется сукцинил-коэнзим А, к которому присоединяется ГДФ (гуанозиндифосфат).

Данная молекула восстанавливается в ГТФ (гуанозинтрифосфат) плюс образуется сукцинат. Он превращается в фумарат, затем малат. В этой реакции синтезируется оксалоацетат и восстановленный НАДН.

Так, цикл Кребса возвращается к цитрату. На каждый цикл затрачиваются 2 молекулы АТФ, синтезируется 6 НАДН в цикле и 4 на подготовительных этапах.

Последняя энергетически приравнивается к трем молекулам АТФ.

В синтезе цитрата задействованы также два ФАДН2 (флавинадениндинуклеотид), на каждую приходится по две АТФ. Таким образом, синтезируемое количество АТФ соответствует 38 молекулам с позиций биологии и биохимии. Однако следует помнить, что это теоретическое число, необходимое для дыхания клетки. Все реакции цикла Кребса катализируются ферментами.

роль – поддержание клеточного дыхания, направленного на рост клетки, синтез новых веществ.

Функции АТФ

Важнейшая функция – участие в энергетическом обмене. Энергия, выделяемая в ходе данных превращений, вновь идет на синтез АТФ. При этом 40% рассеивается в виде тепла. 

Поскольку для поддержания любых процессов жизнедеятельности необходимы энергозатраты АТФ – аккумулятор клетки, универсальный источник запасов энергии. Гликолиз активно протекает при физической нагрузке, в мышцах. Субстратное фосфорилирование также осуществляется из креатинфосфата других органических веществ.

Важно подчеркнуть, что цикл Кребса протекает при расщеплении как углеводов, так и белков и жиров.

Если в качестве «топлива» клетка использует не углевод, гликолиз не протекает (отсюда не происходит затрата двух молекул АТФ с образованием четырех).

Но цикл трикарбоновых кислот протекает одинаково, так как главную роль там играет ацетил-коэнзим А. При кислородном голодании клетка перестраивается на гликолитический путь.

Заключение

АТФ – это особое соединение, содержащее связи, при гидролизе которых высвобождается огромное количество энергии.

Называя синтезом АТФ процесс, выполняющий функцию поддержания жизнедеятельности клетки, нельзя не понять, каково значение этого явления. В действительности количество синтезируемого аденозинтрифосфата может быть меньше 38 молекул.

Суть процесса заключается в синтезе макроэргических веществ, поступающих в дыхательную цепь переноса электронов.

Источник: https://nauka.club/biologiya/sintez-atf.html

Роль АТФ

Как расшифровывается атф в биологии

Определение 1

АТФ – это аденозинтрифосфорная кислота, которая является основным источником клеточной энергии.

АТФ является важнейшим клеточным веществом также и потому, что относится к группе нуклеозидтрифосфатов, обеспечивая метаболизм живых клеток.

Первооткрывателем АТФ в клетке являются ученые-биохимики Суббарао, Ломан и Фиске. АТФ была открыта в 1929 году и ее исследования стали революционными в развитии биологии живых систем. Немного позднее в 1941 году Ф. Липман установил энергетическую функцию АТФ.

АТФ обладает определенными чертами строения:

  • представляет собой трифосфорный эфир аденозина;
  • образуется путём соединения аденина, являющегося пуриновым азотистым основанием;
  • соединяется с 1′-углеродом рибозы при помощи β-N-гликозидной связи.

Тем самым АТФ представляет собой такое соединение, которое содержит связи, гидролиз которых высвобождает колоссальное количество энергии. Подобные связи называют макроэргическими.

Образуется количество энергии, равное 40 и 60-ти кДж / моль. Также в ходе этого процесса отщепляется один или два остатка фосфорной кислоты.

Весь «химизм» описанных выше реакций можно представить следующим образом:

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

  • АТФ + вода → АДФ + фосфорная кислота + энергия;
  • АДФ + вода → АМФ + фосфорная кислота + энергия.

Общеизвестно, что в биоэнергетическом обмене веществ живых организмов важным является наличие двух основных моментов:

  • химическая энергия запасается путем образования АТФ при протекании катаболических реакций окисления органических субстратов;
  • химическая энергия утилизируется путем расщепления АТФ. Этот процесс сопряжен с эндергоническими реакциями анаболизма, а также другими процессами, которые также требуют энергетических затрат.

Выделяют три основных способа образования АТФ в клетке. А именно:

  • субстратное фосфорилирование, протекающее в цитоплазме клетке. Такие реакции получили название гликолиза или анаэробного этапа аэробного дыхания;
  • окислительное фосфорилирование;
  • фотофосфорилирование.

Роль АТФ в клетке

Замечание 1

Процесс фотофосфорилирования — это то же окислительное фосфорилирование лишь с одним отличием: реакции фотофосфорилирования протекают в хлоропластах клетки под действием света.

АТФ образуется во время световой стадии фотосинтеза – основного процесса получения энергии у зеленых растений, водорослей и некоторых бактерий.

Как уже отмечалось ранее, АТФ выполняет в клетке, прежде всего, энергетическую функции. Это обусловлено тем, что подобная молекула содержит две высокоэнергетические связи и обеспечивает многие физиологические и биохимические процессы. К подобным процессам можно отнести все реакции синтеза веществ в организме.

Реакции синтеза – это комплекс химических реакций, направленных на создание вещества с определенной степенью затраты энергии. При этом отмечается активный перенос молекул через клеточную мембрану, включая участие в создании межмембранного электрического потенциала. Также АТФ необходима для обеспечения процесса сокращения мышц.

Также к достаточно важным функциям АТФ, иллюстрирующим ее роль в клетке относят:

  • может являться медиатором в синапсах, сигнальным веществом в других клеточных взаимодействиях. Например, при пуринергической передаче сигнала;
  • АТФ регулирует биохимические процессы. Например, при участии АТФ происходит усиление и подавление активности некоторых ферментов с помощью присоединения к их регуляторным центрам молекулы;
  • участвует в создании циклического аденозинмонофосфата, который, в свою очередь, выступает посредником передачи гормональных сигналов в клетки;
  • наконец, АТФ участвует в синтезе нуклеиновых кислот (ДНК и РНК);
  • АТФ отвечает за обеспечение всех двигательных реакций организма, а именно от ее наличия зависит работа всех элементов опорно – двигательного аппарата.

Любая функция АТФ обусловлена тем, что ее используют для реализации жизненных клеточных процессов. Если АТФ не участвует в нем напрямую, то каким – либо образом обуславливает деятельность организма.

Замечание 2

Синтез АТФ в клетке фактически происходит непрерывно, поскольку организму требуется энергия абсолютно на все процессы жизнедеятельности. Своеобразным «неприкосновенным» запасом АТФ в клетке является 250 граммов данного вещества.

Во время нарушения жизнедеятельности организма, при перенесении человеком каких-либо болезней синтез АТФ происходит намного активнее, поскольку необходимо «покрывать» затраты иммунной системы. Также активизируется система терморегуляции организма, на обеспечение работы которой также требуется большое количество энергии.

Больше всего АТФ содержат такие клетки, как мышцы и нервная ткань, энергообмен в которых протекает особенно быстро. Неизменный уровень АТФ в клетках достаточно важно поддерживать, поскольку при минимальном недостатке данного вещества происходят серьёзные нарушения любого физиологического процесса.

Другими словами, АТФ является маркером стабильности развития организма человека и многих высокоорганизованных животных.

К наиболее интересным фактам, касательно АТФ можно отнести следующие:

  • в клетке около 1 млрд молекул АТФ;
  • срок жизни молекул АТФ очень короткий;
  • синтез АТФ протекает достаточно быстро.

Подводя итог всему вышесказанному, можно сделать вывод о том, что АТФ является часто обновляемым веществом организма человека. Продолжительность жизни молекулы АТФ составляет менее одной минуты, поэтому одна молекула АТФ может зарождаться и распадаться до трех тысяч раз за сутки. В течение дня организм человека создает около 40 кг данного вещества.

На примере цикла синтеза АТФ и ее дальнейшего использования в качестве клеточного топлива рассматривают саму суть энергетического обмена внутри живого организма. Поэтому аденозинтрифосфорная кислота выполняет функцию «батарейки», которая обеспечивает нормальную жизнедеятельность клетки.

Источник: https://spravochnick.ru/biologiya/rol_atf/

АТФ: что это такое в биологии и какие соединения в себе содержит молекула

Как расшифровывается атф в биологии

В основе всех живых процессов лежит атомно-молекулярное движение. Как дыхательный процесс, так и клеточное развитие, деление невозможны без энергии. Источником энергетического снабжения является АТФ, что это такое и как образуется рассмотрим далее.

Сущность понятия

Перед изучением понятия АТФ необходима его расшифровка. Данный термин означает нуклеозидтрифосфат, который существенно значим для энергетического и вещественного обмена в составе организма.

Это уникальный энергетический источник, лежащий в основе биохимических процессов. Данное соединение является основополагающим для ферментативного образования.

АТФ был открыт в Гарварде в 1929 году. Основоположниками стали ученые Гарвардской медицинской школы. В их число вошли Карл Ломан, Сайрус Фиске и Йеллапрагада Суббарао. Они выявили соединение, которое по строению напоминало адениловый нуклеотид рибонуклеиновых кислот.

! Из чего состоит нуклеотид и что это такое

Отличительной особенностью соединения было содержание трех остатков фосфорной кислоты вместо одного. В 1941 году ученый Фриц Липман доказал, что АТФ имеет энергетический потенциал в пределах клетки. Впоследствии был обнаружен ключевой фермент, который получил название АТФ-синтаза. Его задача – образование в митохондриях кислотных молекул.

АТФ – это энергетический аккумулятор в клеточной биологии, является обязательным для успешного осуществления биохимических реакций.

Биология аденозинтрифосфорной кислоты предполагает ее образование в результате энергетического обмена. Процесс состоит из создания 2 молекул на второй стадии. Остальные 36 молекул появляются на третьем этапе.

Скопление энергии в структуре кислоты происходит в связующей части между остатками фосфора. В случае отсоединения 1 фосфорного остатка происходит энергетическое выделение 40 кДж.

В результате кислота превращается в аденозиндифосфат (АДФ). Последующее фосфатное отсоединение способствует появлению аденозинмонофосфата (АМФ).

Следует отметить, цикл растений предусматривает повторное использование АМФ и АДФ, в результате которого происходит восстановление этих соединений до состояния кислоты. Это обеспечивается процессом фотосинтеза.

Строение

Раскрытие сущности соединения возможно после изучения того, какие соединения входят в состав молекулы АТФ.

Какие соединения входят в состав кислоты:

  • 3 остатка фосфорной кислоты. Кислотные остатки объединяются друг с другом посредством энергетических связей неустойчивого характера. Встречается также под названием ортофосфорной кислоты,
  • аденин: Является азотистым основанием,
  • рибоза: Представляет собой пентозный углевод.

Вхождение в состав АТФ данных элементов присваивает ей нуклеотидное строение. Это позволяет относить молекулу к категории нуклеиновых кислот.

Важно! В результате отщепления кислотных молекул происходит высвобождение энергии. Молекула АТФ содержит 40 кДж энергии.

Образование

Формирование молекулы происходит в митохондриях и хлоропластах. Основополагающий момент в молекулярном синтезе кислоты – диссимиляционный процесс. Диссимиляция – процесс перехода сложного соединения до относительно простого за счет разрушения.

В рамках синтеза кислоты принято выделять несколько стадий:

  1. Подготовительная. Основа расщепления – пищеварительный процесс, обеспечивается за счет ферментативного действия. Распаду подвергается пища, попавшая в организм. Происходит жировое разложение до жирных кислот и глицерина. Белки распадаются до аминокислот, крахмал – до образования глюкозы. Этап сопровождается выделением энергии теплового характера.
  2. Бескислородная, или гликолиз. В основе лежит процесс распада. Происходит глюкозное расщепление с участием ферментов, при этом 60% выделяемой энергии превращается в тепло, остальная часть остается в составе молекулы.
  3. Кислородная, или гидролиз, Осуществляется внутри митохондрий. Происходит с помощью кислорода и ферментов. Участвует выдыхаемый организмом кислород. Завершается полной диссимиляцией. Подразумевает энергетическое выделение для формирования молекулы.

Существуют следующие пути молекулярного образования:

  1. Фосфорилирование субстратного характера. Основано на энергии веществ в результате окисления. Превалирующая часть молекулы формируется в митохондриях на мембранах. Осуществляется без участия ферментов мембраны. Совершается в цитоплазматической части посредством гликолиза. Допускается вариант образования за счет транспортировки фосфатной группы с иных макроэргических соединений.
  2. Фосфорилирование окислительного характера. Происходит за счет окислительной реакции.
  3. Фотофосфорилирование у растений в ходе фотосинтеза.

! Биология: какие органические вещества и соединения входят в состав клетки

Значение

Основополагающее значение молекулы для организма раскрывается через то, какую функцию выполняет АТФ.

Функционал АТФ включает следующие категории:

  1. Энергетическую. Обеспечивает организм энергией, является энергетической основой физиологических биохимических процессов и реакций. Происходит за счет 2 высокоэнергетических связей. Подразумевает мышечное сокращение, формирование трансмембранного потенциала, обеспечение молекулярного переноса сквозь мембраны.
  2. Основу синтеза. Считается исходным соединением для последующего образования нуклеиновых кислот.
  3. Регулятивную. Лежит в основе регуляции большинства процессов биохимического характера. Обеспечивается за счет принадлежности к аллостерическому эффектору ферментативного ряда. Воздействует на активность регуляторных центров путем их усиления или подавления.
  4. Посредническую. Считается вторичным звеном в передаче гормонального сигнала в клетку. Является предшественником образования циклического АДФ.
  5. Медиаторную. Является сигнальным веществом в синапсах и иных взаимодействиях клеточного характера. Обеспечивается пуринергическая сигнальная передача.

! Каково значение гомеостаза и что это такое

Среди вышеперечисленных моментов главенствующее место отводится энергетической функции АТФ.

Важно понимать, независимо от того, какую функцию выполняет АТФ, ее значение универсально.

Подведем итоги

В основе физиологических и биохимических процессов лежит существование молекулы АТФ. Основная задача соединений – энергетическое обеспечение. Без соединения невозможна жизнедеятельность как растений, так и животных.

Источник: https://tvercult.ru/nauka/urok-biologii-molekula-atf-chto-eto-takoe

СправкаБолезни
Добавить комментарий